Stimulation of feeding by three different glucose-sensing mechanisms requires hindbrain catecholamine neurons.

نویسندگان

  • Ai-Jun Li
  • Qing Wang
  • Thu T Dinh
  • Bethany R Powers
  • Sue Ritter
چکیده

Previous work has shown that hindbrain catecholamine neurons are required components of the brain's glucoregulatory circuitry. However, the mechanisms and circuitry underlying their glucoregulatory functions are poorly understood. Here we examined three drugs, glucosamine (GcA), phloridzin (Phl) and 5-thio-d-glucose (5TG), that stimulate food intake but interfere in different ways with cellular glucose utilization or transport. We examined feeding and blood glucose responses to each drug in male rats previously injected into the hypothalamic paraventricular nucleus with anti-dopamine-β-hydroxylase conjugated to saporin (DSAP), a retrogradely transported immunotoxin that selectively lesions noradrenergic and adrenergic neurons, or with unconjugated saporin (SAP) control. Our major findings were 1) that GcA, Phl, and 5TG all stimulated feeding in SAP controls whether injected into the lateral or fourth ventricle (LV or 4V), 2) that each drug's potency was similar for both LV and 4V injections, 3) that neither LV or 4V injection of these drugs evoked feeding in DSAP-lesioned rats, and 4) that only 5TG, which blocks glycolysis, stimulated a blood glucose response. The antagonist of the MEK/ERK signaling cascade, U0126, attenuated GcA-induced feeding, but not Phl- or 5TG-induced feeding. Thus GcA, Phl, and 5TG, although differing in mechanism and possibly activating different neural populations, stimulate feeding in a catecholamine-dependent manner. Although results do not exclude the possibility that catecholamine neurons possess glucose-sensing mechanisms responsive to all of these agents, currently available evidence favors the possibility that the feeding effects result from convergent neural circuits in which catecholamine neurons are a required component.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of Feeding by Three Different Glucose - Sensing Mechanisms Requires Hindbrain

1 Stimulation of Feeding by Three Different Glucose-Sensing Mechanisms Requires Hindbrain 2 Catecholamine Neurons 3 4 5 Ai-Jun Li*, Qing Wang, Thu T. Dinh, Bethany R. Powers and Sue Ritter 6 7 Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620, USA 8 9 10 Abbreviated title: Catecholamine neurons, glucosensing, and feeding 11 12 13 * Corresponding author. Depar...

متن کامل

Participation of Hindbrain AMP-Activated Protein Kinase in Glucoprivic Feeding

OBJECTIVE To examine the role of AMP-activated protein kinase (AMPK) in the control of glucoprivic feeding by hindbrain catecholamine neurons. RESEARCH DESIGN AND METHODS Micropunched hindbrain samples were collected from control and 2-deoxy-d-glucose (2DG)-injected rats for Western blot analysis of phosphorylated (activated) AMPK (pAMPK). Samples also were collected from 2DG-injected rats pr...

متن کامل

Orexin-A enhances feeding in male rats by activating hindbrain catecholamine neurons.

Both lateral hypothalamic orexinergic neurons and hindbrain catecholaminergic neurons contribute to control of feeding behavior. Orexin fibers and terminals are present in close proximity to hindbrain catecholaminergic neurons, and fourth ventricular (4V) orexin injections that increase food intake also increase c-Fos expression in hindbrain catecholamine neurons, suggesting that orexin neurons...

متن کامل

Simultaneous silencing of Npy and Dbh expression in hindbrain A1/C1 catecholamine cells suppresses glucoprivic feeding.

Previous data have strongly implicated hindbrain catecholamine/neuropeptide Y (NPY) coexpressing neurons as key mediators of the glucoprivic feeding response. Catecholamine/NPY cell bodies are concentrated in the A1 and caudal C1 cell cluster (A1/C1) in the ventrolateral medulla, a region highly sensitive to glucoprivic challenge. To further investigate the importance of this catecholamine subp...

متن کامل

Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-D-glucose-induced neuropeptide Y and agouti gene-related protein messenger ribonucleic acid expression in the arcuate nucleus.

Neuropeptide Y (NPY) and agouti gene-related protein (AGRP) are orexigenic peptides of special importance for control of food intake. In situ hybridization studies have shown that NPY and AGRP mRNAs are increased in the arcuate nucleus of the hypothalamus (ARC) by glucoprivation. Other work has shown that glucoprivation stimulates food intake by activation of hindbrain glucoreceptor cells and r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 306 4  شماره 

صفحات  -

تاریخ انتشار 2014